Hjärnsignaler fångas med mjuk elektronik
Hem NYHETERFORSKNING Hjärnsignaler fångas med mjuk elektronik

Hjärnsignaler fångas med mjuk elektronik

Publicerat av: Redaktionen

Klas Tybrandt, forskningsledare vid Laboratoriet för organisk elektronik, Linköpings universitet, har tagit fram en ny och stabil metod att mäta neurala signaler under lång tid.

Hjärnsignaler fångas med mjuk elektronik 2Tekniken är baserad på ett nytt elastiskt material som är biokompatibelt och som behåller hög elektrisk ledningsförmåga även när det töjs till sin dubbla längd.

Den nya materialtekniken är framtagen i ett samarbete med forskarkollegor i Zürich och New York och presenteras i en artikel i den ansedda vetenskapliga tidskriften Advanced Materials.

Kopplingen mellan elektronik och nervceller är av avgörande betydelse, såväl för att vi ska kunna samla in information om cellernas signalering som för att diagnosticera och behandla neurologiska störningar och sjukdomar, som exempelvis epilepsi.

Långvariga och stabila kopplingar som inte skadar nervceller eller vävnad är mycket svårt att åstadkomma eftersom de båda systemen, människans mjuka och elastiska vävnad respektive den hårda elektroniken, är så olika rent mekaniskt.

– Eftersom mänsklig vävnad är elastisk och rör sig kommer det att uppstå skador och inflammationer i kontaktytan med den stela elektroniken. Förutom att det skadar vävnaden så dämpar det också ut nervsignalerna, säger Klas Tybrandt, forskningsledare för området Mjuk elektronik, vid Laboratoriet för organisk elektronik, Linköpings universitet, Campus Norrköping.

Klas Tybrandt har nu tagit fram ett nytt elektriskt ledande material som är mjukt som mänsklig vävnad och som kan töjas till sin dubbla längd. Materialet består av tunna guldbelagda nanotrådar i titanoxid, inbäddade i silikongummi. Materialet är biokompatibelt – kan vara i kontakt med kroppen – och ledningsförmågan är stabil över tiden.

– Mikrofabrikation av mjuka elektriskt ledande kompositmaterial har många utmaningar. Vi har tagit fram en process för att tillverka de små elektroderna som samtidigt bevarar materialens biokompabilitet. Processen är också materialsnål, vilket gör att vi kan arbeta med ett relativt dyrt material som guld till en låg kostnad, säger Klas Tybrandt.

Elektroderna är 50 µm stora och placerade på ett avstånd av 200 µm från varandra. Vid tillverkningen får man plats med 32 elektroder på en mycket liten yta. Hela proben på bilden är 3,2 mm bred och 80 µm tjock.

Är framtagna vid Linköpings universitet och ETH Zürich och forskarkollegor vid New York University och Columbia University har sedan implanterat dem i hjärnan på råttor. Under tre månader har forskarna sedan kunnat samla in signaler av hög kvalitet från de fritt rörliga råttorna.

Försöken har gjorts efter etiska tillstånd och under det strikta regelverk som gäller för djurförsök.

– När cellerna i hjärnan skickar ut signaler bildas en spänning som elektroderna fångar upp och skickar vidare via en liten förstärkare. Vi kan också se från vilka av elektroderna signalerna kommer, det vill säga var i hjärnan signalerna har sitt ursprung. Denna typ av spatiotemporal information är viktig för framtida tillämpningar. Förhoppningen är att vi ska kunna se var exempelvis signalen som orsakar ett epileptiskt anfall startar, en förutsättning för att kunna behandla framtida anfall. Ett annat användningsområde är hjärna-maskin-gränssnitt där framtida teknik och proteser kan styras med nervsignaler. Det finns även en rad intressanta tillämpningar mot nervsystemet i kroppen och dess reglering av olika organ, säger Klas Tybrandt.

Genombrottet ligger till grund för forskningsområdet Mjuk elektronik – Soft Electronics, som nu byggs upp vid Linköpings universitet, med Klas Tybrandt som forskningsledare.

Relaterade Artiklar

Vi använder cookies och andra identifierare för att förbättra din upplevelse. Detta gör att vi kan säkerställa din åtkomst, analysera ditt besök på vår webbplats. Det hjälper oss att erbjuda dig ett personligt anpassat innehåll och smidig åtkomst till användbar information. Klicka på ”Jag godkänner” för att acceptera vår användning av cookies och andra identifierare eller klicka ”Mer information” för att justera dina val. Jag Godkänner Mer Information >>